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SUMMARY

A Monte Carlo procedure has been developed to simulate turbu-
lent boundary layer wall pressure fluctuations. The approach
utilizes much of the newly available conditional sampling infor-
mation to construct the required distribution functions. Various
disturbance wave forms have been examined, as well as the effect
of frequency-dependent decay. Good agreement between the simulation
and experimental data has been achieved for root mean square

pressure level, power spectrum, and space-time correlation.

SYMBOLS
f frequency (Hz)
n random number
P pressure
Prms root mean square pressure
Rpp space-time correlation
St Strouhal number (w 6*/Uw)
T integration time interval
t time
to reference time
U free stream velocity



u convection velocity

c
uT friction velocity

b4 coordinate in direction of flow
Xp development length

y transverse coordinate

Y frequency adjustment parameter
§* displacement thickness

v kinematic viscosity

T dimensionless time (U_t/&%)

Tw wall shear stress

w radian frequency

I. INTRODUCTION

The purpose of this report is to present a procedure for simu-
lating wall pressure fluctuations beneath a low speed, fully turbu-
lent boundary layer. A simulation was desired because it could
supply local pressure fluctuation data with arbitrary spatial and
temporal resolution for a variety of velocity and boundary layer
thickness conditions. The arbitrary resolution feature permits
direct coupling between simulated boundary layer pressure fluctua-
tions and numerical structural analysis codes, resulting in straight-
forward prediction of local surface motion produced by the simulated
turbulent boundary layer. This work represents part of a compliant
wall drag reduction study undertaken at NASA/Langley Research

Center.

Bushnell, Hefner, and Ash (ref. 1) have discussed a possible
mechanism for reducing skin friction drag by means of a compliant
surface. Based on that discussion, it is apparent that such an
effect can exist only if the surface motion is compatible with
the turbulent flow structure. They have suggested that the

violent turbulent "bursts'" near the wall, as discussed by Offen



and Kline (ref. 2), can be inhibited by a suitable periodic surface
motion. In addition to the connection between surface motion and
inner turbulent flow structure, it is known that the wall pressure
fluctuations are produced primarily by large vorticular structures
in the outer portion of the boundary layer (see Praturi, ref. 3,
for a description of the outer flow structures). Consequently,

the surface motion is driven by disturbances emanating from the
outer part of the boundary layer, and is required to interact

with flow structures in the inner region. These conditions put
stringent requirements on wall pressure simulation and surface
motion calculations. Ash and Balasubramanian (ref. 4) have dis-
cussed some of those problems. It should be evident that the
simulation of turbulent wall pressure fluctuations must be connected
as closely as possible to the physics of the flow. Furthermore,
the simulated turbulent structure must result in pressure fluctua-
tion statistics that reproduce accepted experimental data.

Willmarth (ref. 5) has summarized most of the experimental
measurements of turbulent wall pressure statistics, and only those
measurements which were needed for the simulation are mentioned
here. Willmarth and Woolridge (ref. 6) and Bull (ref. 7) have
presented detailed measurements of wall pressure energy spectra
and space-time correlations. Both investigations found that the
pressure energy spectrum peaked at a Strouhal number (St = W 6*/Um)
of about 0.2, that the root mean square pressure was related to
the wall shear stress (prms ~ 2.5 to 2.8 Tw), and that pressure
fluctuations were convected downstream with varying speeds. They
were uncertain whether the pressure disturbances with different
sizes (or frequencies) were convected with different velocities,
or whether disturbances actually changed speeds, or both. Both
investigations did reveal more rapid decay in the correlation
of high frequency pressure fluctuations than low frequency fluc-
tuations. Emmerling (ref. 8) used an optical method to simul-
taneously measure pressure fluctuations on a rectangular area.

His measurements confirmed the previously observed wide variation
in convection speeds, but he also found that root mean square
pressure levels were strong functions of the diameter of the



pressure sensor. However, Bull and Thomas (ref. 9) suggest that a
significant portion of the pressure discrepancy is due to the type
of pressure sensor used in those experiments. Bull and Thomas'
measurements did confirm a modest increase in rms pressure levels
with decreasing sensor diameters. Burton (ref. 10) has utilized
conditional sampling techniques to relate instantaneous wall
pressure data to the structural features of the turbulent flow.

He found that '"bursts'" (see Offen and Kline, ref. 2), which are

a major source of Reynolds stresses at the wall, are highly
correlated with the occurrence of large instantaneous, local
adverse pressure gradients. Burton was unable to 1link the burst
structure with the development of the outer structure of the

turbulent flow.

The present work is not the first attempt to calculate numeri-
cally turbulent wall pressure. Deardorff (ref. 11) used a finite
difference solution to the Navier-Stokes equations for flow in a
channel to calculate pressure fluctuations. That work has been
extended by Schumann (ref. 12) for an annular flow. Both were
able to show good agreement between their computed rms pressure
levels and experiments. However, because of computational limita-
tions on spatial resolution and time step, neither was capable of
simulating energy spectra or space-time correlations. Although
the Navier-Stokes solution approach is clearly the most funda-
mentally correct method for calculating turbulent wall pressure
fluctuations, it is currently incapable of resolving that data
sufficiently to produce detailed statistical approximations to
the experimental data. The method employed here attempts to
simulate the structural features of a turbulent boundary layer
as observed in experimental measurements, and does not attempt
to satisfy the equations of motion. Rather, it is anticipated
that the simulated wall pressure might be useful in conjunction
with Navier-Stokes solvers by providing a realistic dynamic

pressure boundary condition.



II. SIMULATION STRATEGY

- Ash (ref. 13) has discussed the preliminary strategy employed
in this work. Essentially, single cycle pressure fluctuations are
convected over a model surface, and their conttribution to the local
instantaneous pressure field is stored at user-specified spatial
locations with a user—specified time resolution. A Monte Carlo
method has been used to locate the origin of each pressure fluctu-
ation event (both spatial location and time), as well as to assign
frequency and amplitude. The basis for the various distribution
functions used in the Monte Carlo approach will be discussed here.

A. Spatial and Temporal Location of
Individual Pressure Events

Burton (ref. 10) has shown that the bursts in the near wall
flow are highly correlated with the wall pressure. Regardless of
whether the burst structures evolve into the large outer structure
of the boundary layer or not, the burst data represents a good
measure of distance and time between individual pressure fluctua-
tion events. Offen and Kline (ref. 2) indicate that spatial
separation, Ax, and temporal separation, At, between burst
events are related by

Ax = u, At
or
Ur
Ax = &% T At , ‘ (1)

(o2

where u is the friction velocity, &* 1is the displacement thick-
is the free stream velocity, and T is dimensionless
U, t/8%).

ness, U

g A

time (T

Burst occurrence measurements from Offen and Kline (ref. 2)
have been used to construct the probability density function



shown in figure 1. From that figure it can be seen that a Gamma
distribution represents the data reasonably well. Ash (ref. 13)
has shown that the cumulative probability distribution, constructed
from the Gamma distribution, is well represented by the Monte

Carlo distribution function:

m

2 + 72 n2 + 0.63 tan 5 n (2)

T =82.2 - 735619

where n 1is a uniformly distributed (0 < n < 1) random number.

Equations (1) and (2) can also be used to assign the distance
between pressure events, since T 1is actually At -- the temporal

separation between events.

B. Frequency Associated with Pressure Fluctuation Event

Bull's (ref. 7) power spectrum measurements have been used as
a basis for constructing the frequency-generating function. As
reported by Ash (ref. 13) a cumulative probability function can
be constructed from the power spectrum. However, the individual,
single cycle pressure disturbances so generated do not necessarily
reproduce the prescribed power spectrum. Problems of that type

encountered in this investigation will be discussed subsequently.

C. Amplitude of Individual Pressure Events

Because of the triggering strategy used in Burton's (ref. 10)
conditional sampling measurements, it has been possible to infer
that the distribution of individual pressure event amplitudes is
Gaussian. Obviously, the mean level is zero and the standard

deviation is simply the root mean square pressure.

D. Construction of a Convected Sequence of Pressure Events

As the individual pressure events are convected downstream,
their amplitude must decay. Bull (ref. 7) has measured the decay

rate, and it is well approximated by
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Figure 1. Probability distribution of time between bursts.



-4260 v/(uTx)
lp(x + x ) |/[p(x)] =1 - e (3)

where |p(x + xo)| is the amplitude of the disturbance at a dis-
tance x from its original location. The above equation does not

account for frequency-dependent decay.

Although a substantial amount of evidence indicates that disﬁ

turbances are convected downstream with a range of speeds (0.5 < ﬁg

[~]

< 0.85), a constant and relatively high value of
u, = 0.80U (4)

has been used here. There appear at this time to be no measurements
which relate convection speed to size and location of pressure

disturbances.

At this point, spatial and temporal spacing, frequency, ampli-
tude, decay rate, and convection speed models have been discussed.
The only remaining features are the procedure for constructing an
orderly progression of pressure events and a determination of the
required development length for startup of the simulation.

Obviously, the required model development length can be deter-
mined using the spatial decay equation. If one assumes that dis-
turbances which have decayed to an amplitude of one percent of
their original value are negligible, the required startup, Xpys

is given by

xp = 0.425 x 108 u_/v (5)

from equation (3).

The sequence of pressure disturbances is constructed by employ-
ing equations (1) and (2) along with a random number generator to
march from the leading edge of the development length to the trail-
ing edge of the model (region over which pressure is recorded).

The distance between event birth locations is thus random and



distributed in a manner consistent with Offen and Kline's (ref. 2)
burst data. A reference time, to, is frozen during the random
Ax travel from leading edge to trailing edge, but the time of
birth of each event, Atn, is distributed away from to by

tpirth = Yo * Aty (6)

again, using equation (2) and a random number generator for Atn.
Each Atn is stored during the spatial travel from leading to

trailing edge, and an average time step, Atavg’ is computed for
each complete spatial excursion. A new reference time, to = to +
At is then used, and the procedure is repeated. As each pressure

avg’
event is convected over the desired storage locations, its contri-

bution is stored at user-specified time intervals.

Further details of the initial development of this procedure
are given in Ash, reference 13. At that time, only rms pressure
level and a pressure signal had been produced. The statistical
features of the simulation had not been examined, and no attempt
had been made to optimize the simulation. A detailed study of
the various factors which influence the quality of the pressure

simulation has been carried out since that time.
III. EVALUATION AND OPTIMIZATION OF PRESSURE SIMULATION

Initially, a single period, sine wave was employed to carry
the pressure fluctuation event information. The power spectrum
resulting from the simulation just described is shown in figure
2. The space-time correlation, defined by

1 T X
T_/; p(0,t) p(g;, t + T)dt

(7)
Prps(0) prms(§%>

R 1')
PP (6*’ T

is shown in figure 3, along with Bull's (ref. 7) measurements.

Neither of the simulated results was satisfactory.
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Figure 2. Power spectrum generated by simulation
from reference 13.
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Since there was no physical basis for employing a simple sine
wave as the pressure event carrier, an investigation of other wave
shapes was undertaken. Four other wave shapes were examined.
Their names (for reference purposes) and equations are given in
table 1, along with a sketch of the wave form. A composite power
spectrum for all five waves (including the original sine wave) is
shown in figure 4. Except at low frequencies where the spectral
resolution is not very good (resulting in data scatter), little

effect of wave shape can be observed on the power spectrum.

Comparison of the space-time correlations with Bull's (ref. 7)
data are shown in figures 5 through 8. It is evident from figure 5
that the double sine wave affects significantly the space-time
correlation. Very good agreement in shape and width of positive
correlation between Bull's data and the simulation has been achieved.
At x/6*% of 6.28, the correlation is too narrow at its peak,
but remains in good qualitative agreement. All other wave forms
(figures 3 and 6 through 8) show varying degrees of agreement.
Significantly, only the double sine wave carrier caused the space-
time correlation to possess the negative correlation regions observed
in Bull's (ref. 7) measurements. Discrepancies in the correlation
peaks were not considered significant because they could be adjusted

by changing the constant in equation (3).

The wave form investigation was expected to accomplish two
things. TFirst, it was desired to select a carrier wave which would
yield space-time correlations which were comparable to the experi-
mental measurements. Secondly, it was hoped that one or more of
the wave forms would yield spectral distributions closer to the
experimental measurements. The second phase was not successful
per se, but led to two other observations. Not only was the power
spectrum nearly insensitive to the wave forms examined, but wave
shapes which were very similar to the double sine wave did not

produce similar space-time correlations.

Two important features of the experimental measurements of
Bull (ref. 7) and Willmarth and Woolridge (ref. 6) had not been
modeled at this point. Both investigations suggested that
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Table 1. Carrier wave models.

Name

Sine

Double Sine

Eighth Power

Jitter

Skewed

14.4[Sin & - .5005 sin

Equation

sin @
sin 6 - 7 sin 28

sin 6(1 - cos® % cos 9)

1.05 .95

100[sin 8 - .5314 sin 23 05T _ 4813 sin 2_1_;9&1]

6 + 27w 0 + 27
——1-.65— - .5513 sin 9—5]

_Shape

d LS

Symbol
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Figure 4. Composite spectrum for various wave forms.
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disturbances were convected with different speeds and that their
decay was dependent on their characteristic frequencies. As men-
tioned previously, the constant convection speed may have been
high, but since no definitive data were available to permit a
reasonable variable convection speed model, the convection speed
was not varied. Willmarth and Woolridge (ref. 6) did show the
influence of disturbance frequency on decay rate, and it was
decided to investigate the influence of frequency-dependent decay

on the statistical features of the simulation.

The filtered space-time correlation decay measurements of

Willmarth and Woolridge (ref. 6) provide a basis for developing

a frequency—dependent decay model, but they are not sufficiently
detailed to permit concise modeling. Their low frequency data was
taken with a midband Strouhal number of about 0.7 which was more
than three times higher than the peak frequency. Their high fre-
quency measurements were centered about a Strouhal number of 5,
where the energy level was smaller than the peak level by nearly
two orders of magnitude. In addition, since only two frequency
bands were employed, there was no way of predicting just how the

decay rate varied with frequency.

Decay adjustment with frequency was accomplished by measuring
the space-time correlation peak in Willmarth and Woolridge's data
at x/8* = 2,5, Then, solving the equation

Rop(2.5, Tpae) =1 - e (8)

for A. Using the two frequency levels it was found that

Aw >~ 5.6 X 1068 Sec (9)

where ®w was the midband radian frequency. Because of the form
of the decay parameter in the computer program, decay was related
to the disturbance wavelength rather than radian frequency, and

a reference value for A. The assumed form was

19
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Ip' (0, x)]| -3230 vA/(xu_A.)
—_— =1 - e (10)
Ip'-(w: O)I ! .

where xr is the wavelength of a reference disturbance, given by
Ar = 0.8 &% v (11)

with Yy a parameter (taken as 30 in the test) used to relate the
reference disturbance length to a small disturbance length (0.8 &§*).

A simulation was generated using the linearly dependent fre-
quency (wavelength) decay function given in equation (10). The
power spectrum resulting from that simulation is shown in figure 9.

It can be seen that frequency—dependent decay has significantly

altered the power spectrum. Furthermore, the alteration--particularly

at high frequencies--is favorable. Unfortunately, examination of
the associated space-time correlation, shown in figure 10, indicates
that linearly varying decay has had a devastating effect.

Three significant observations from this study can be made at
this point: (1) the double sine wave carrier is clearly superior
to the other wave forms examined with regard to producing reason-
able space-time correlation curves; (2) wave form does not affect
significantly the power spectrum, and the Monte Carlo frequency
generating function used thus far does not appear to be acceptable
in simulating the power spectrum because of the absence of a
clearly defined peak in the energy spectrum; and (3) frequency-
dependent decay is a major influence on the shape of both the
power spectrum and the space-time correlation curves. These
observations permitted a threefold adjustment of the simulation

program. Each adjustment will be addressed separately.

A. Wave Form

The double sine wave disturbance carrier was used for the
remainder of the simulations. Its obvious higher harmonic contri-

bution to the wall pressure energy spectrum did not significantly
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alter that spectrum. The fact that different waves nominally with
the same shape were not capable of preserving the desired features
of the space-time correlation suggests that the higher harmonic
aspect of that wave carrier may have physical significance.
Regardless of the physical significance, no further wave form
studies appeared warranted.

B. Frequency-Generating Function

An adjustment was certainly required for the Monte Carlo fre-
quency generator. However, it was uncertain at this point just
how the combined effects of frequency-dependent decay and a modi-
fied frequency generator might interact. Rather than examine the
effects separately, the composite spectrum shown in figure 4 was
selected as a guide for adjusting the frequency generator and the
decay variation, discussed subsequently, was modified simultaneously.

A curve was faired through the simulated spectral data shown
in figure 4 and a ratio of desired level (based on Bull's data)
to generated level was established. The resulting spectrum,
gotten by multiplying the ratio of Bull's values to the simulated
values by Bull's original spectrum, is shown in figure 11. Using
the resulting spectrum, the cumulative probability function was
obtained by graphically integrating the area under the power
spectrum curve. That distribution is also shown in figure 11.

Using the features of the cumulative probability distribution
function (particularly the upper and lower frequency limit asymp-
totes) shown in figure 11, the dimensionless frequency-generating

function given by

d=0.523]—2  _ 1| + 0.799 n2/3 - 0.785 n (12)

(1 - n)- 74

was constructed. No significant deviation between the curve of

equation (12) and the curve shown in figure 11 was observed.

23
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C. Frequency-Dependent Decay

Based on the drastic effect of frequency-dependent decay on
the space-time correlation curves, as shown in figure 10, the
linear variation of decay with frequency was abandoned. The
difficulty was due to the fact that at the lowest freguencies
decay rates were two orders of magnitude slower than at the high-
est frequencies--causing an inappropriate overemphasis on the low
frequency waves and resulting in the greatly widened positive

space-time correlation regions shown in figure 10.

Frequency dependent decay was still desirable from the experi-
mental implications, as well as its favorable effect on the power
spectrum. An exponentially Varying frequency dependent decay
function was selected because it was capable of maintaining nearly
constant decay rates at the lower frequencies (below Strouhal
numbers of about 0.2), while increasing significantly the rate of

decay at the higher frequencies. The form used was given by

|p(w, x)| -3000 v f(w)/(u x)
_ =1 - e (13)
|p(w, 0)]

where f(w) was given by

~(w/wg) = /A)
= e

f(w) = e (14)

with Wy specified in the same manner as Ar in the linear case
(y was taken as 10 in this case).

The power spectrum and space-time correlations generated by a
simulation using the modifications just described are shown in
figures 12 and 13 respectively. Good agreement between the simu-
lation and experimental data is evident. The deviation in decay
rate indicated in figure 13 is small (about 10 percent) and can
probably be reduced further by adjustments in the decay function.
However, the agreement was considered adequate at this point.

25
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In concluding this section, it should be noted that no formal
discussion of rms pressure level has been made thus far in this
report. It is extremely simple to adjust rms pressure level in
this simulation because one need only adjust the prefix of the
Gaussian amplitude generator. The amplitude of the rms pressure
level has no affect on the other statistical properties of the
simulation. The desired rms pressure level was assumed to be
3TW —-— slightly higher than either Bull's (ref. 7) or Willmarth and
Woolridge's (ref. 6) measurements, but consistent with the observa-
tions of Emmerling (ref. 8) and Bull and Thomas (ref. 9). As
evidenced by the comment statement in the computer program listed
in the appendix of the present report, a somewhat reduced prefix
magnitude (20 percent reduction) was required to yield a nominal
Prms of STW at the five simulation stations. Variations of
each of the rms pressure levels from the specified value were

about plus or minus five percent.
IV. RESULTS AND DISCUSSION

This investigation has shown that it is possible to simulate
turbulent wall pressure fluctuations using a Monte Carlo approach.
The simulation is capable of satisfactorily reproducing rms pressure
levels, power spectra, and space-time correlations (in the direc-
tion of flow). The simulation permits arbitrary resolution of
pressure data in both space and time, making the output directly

accessible to other computational analyses.

The latest version of the FORTRAN computer code for generating
the simulation is included in the appendix to this report. The
space-time correlation calculations generated at the end of the
listed simulation program are not correct, but were merely used
to check the computation prior to storage on tape. The simulation
of 0.767 seconds of pressure data at five spatial locations with a
resolution of 46.5 microseconds required nearly 2800 seconds of
CDC 6600 computer time.

Obviously, a great deal of computer time is required to gener-

ate a simulation. However, generation of a 1 or 2 second simulation



can be used to produce an essentially infinite time simulation simply
by randomly accessing segments of the simulation and piecing them
together. Since the data is on tape, the simulation output can

be read, one time step at a time, into the other computer prograns,

thereby alleviating the storage requirements for further analyses.

Arbitrary spatial resolution is also limited by the storage
capacity of the computer, i.e., pressure data cannot be stored at
an infinite number of spatial locations. However, that problem
can also be bypassed by taking advantage of the fact that the
random number generator in a computer reproduces itself. - That is,
if the same startup number (seed) is used for all runs and the
length of the model does not change (the last storage location
must be fixed), the simulation can be repeated. Since the space
and time resolution of the output is arbitrary, the computer will
go through an identical chain of random numbers and, by changing
the storage locations for the output, an arbitrary number of
pressure histories for the specified spatial locations can be

generated and stored on one or more tapes.

Besides the ability to generate infinite duration one-dimensional
pressure histories, a two-dimensional simulation can be produced in
much the same manner. If the transverse spacing, Ay, between
storage locations is greater than about 25 §*, the same simulation
can be randomly accessed to produce pressure histories for succes-
sive strips, since R__(x, Ay, t) would be nominally =zero. If the

pPp
spacing is less than 25 6%, a similar approach can be used.

When two-dimensional simulations are required where Ay < 25 §*.
there are a countable number of locations that occupy a strip 25 &%
wide. Using the procedure above to lay down histories on the loca-
tion lines that exceed 25 §*, the intermediate strips can be gener-
ated by alternately assigning data from the independent strips.

The transverse space-time correlation could be used to construct
a generating function to yield such a simulation, but further

research would be required to augment that case.

Finally, since spatial data scales with &%, and time data
with 6*/Uw, a given simulation can be used for more than one

29
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flow condition, but the user loses control of space and time reso-
lution of the output, as well as the skin friction coefficient
(since uT/U°° has already been set in the simulation). The
usefulness of a general simulation for all turbulent boundary

layers is therefore rather restricted.

The author would like to thank Ramakrishna Balasubramanian
for his assistance in constructing the computer codes used in

this investigation.



APPENDIX

PRESSURE SIMULATION FORTRAN PROGRAM
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JOB41 4 7700300000+100000 AAETT Ra313 101409 BIN34
USER«UALARAMAKRISHNAM 000029300E 37200 NAS oDy
L INECNT (50000)
REQUEST«TAPE] s HY SAVTP«RIL «RSBePRF 1%
REWIND(TAPE>)
RUNI(S)
LGOe
PROGRAM SIMU((INPUTsOUTPUT s TAPES=INPUT«TAPE6=0UTPUT +sTAPE L » TAPF2)

DIMENSION P(5+16500)
DIMENSION SUMX{8000) .5UMY (8000)

DIMENSION PA(S)sPRI(S)
EQUIVALENCE (P(66000) +SUMX (1)) (P{74000)«5UMY (1))
NR=SSNW=6

Cc NDIM=MAXIMUM TIME DIMENS]ION
NDIM=16500
CDIM=NDIM
C CORX IS THE ADJUSTMENT FOR DX STREAK.
(] 1F MORE THAN ONE BURST PER STREAKs CORX 1S NOT UMITY
CORX=1e
C CORT 15 THE TIME ADJUSTMENT FOR DT-STRFAK
CORT=1e
C XD=DEVELOPMENT LENGTH (M)
C XM=MODEL LENGTH (M)
C PAR 1S THE DECAY ADJUSTMENT ACCOUNTING FOR DISTURBANCF SIZF
PAR=10e
XD=4e145
I1MJ=0
XM=0eO
DXT=0.008
157 XD=XD+XM
XT=XD+XM
C DXT=NODE SPACING ON MODEL (M)
NXM=5
XSMX=XD+DXT¥#NXM
C XSMX IS THE RIGHT-MOST LOCATION STORING PRESSURE
US=33e538BLT=004083UFRIC=125878CNU=000001395
RHO=1«2
DRPT=BLT/8B
C ENTER OTHER DISPLACEMENT THICKNESS HERE IF DESIRED (CM)
C CALCULATION OF WALL SHEAR STRESS. Tw
TW=RHO*UFRIC*UFR]|C
C CALCULATION OF RMS PRESSURE FLUCTUATION

PRMS=3e%TW
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CALCULATION OF MINIMUM RELEVANT DISTURBANCE LENGTH

TWV IS TIME DURATION OF DISTURBANCE

TWv=DPT/US

LEMGTH OF SMALL DISTURBANCE

CLM=0e8*US*TWY

DECAY BIAS PARAMETER

CWV=PAR®CLM

M1SCELLANEOUS CONSTANTS

PI=3e1415926

TP1=2.%P1

HPI=P1/2e

CO=2.515517

C1=0.802853

C2=0.010328

D1=1.432788

D2=0.189269

D3=0.001308

STARTER FOR RANDOM NUMBER GENERATOR

XSTART=77653,

RNM=URAN (XSTART )

XSTART=040

CALCULATION OF NOMINAL PEAK FREGQUENCY

FPEAK=0420574%US/ (TP *DPT)

FMAX=10 ¢ ¥FPEAK

COMPATABLE TIME STEP

DTT=1e/FMAX/10,

A USER SPECIFIED TIME STEP CAN BE ENTERED HERE

THIS TIME STEP IS THE TIME INCREMENT USED IN THE RESOLUTION OF THE
OUTPUT~~THE INTFRNAL FLUCTUATION TIME STEP IS RANDOM

MAXIMUM TIME [S CONSTRAINED BY COMPUTER STORAGE. SET THE NUMBER
OF ALLOWABLE TIMESTEPS—-—-NTM

NTM=16500

INITIAL TIME 1S TO(SEC)

TO=04e

DTAVG=0e

PREF IXES FOR RANDOM NUMBER CALCULAT!ONS

PX=DPT®*UFRIC/US

PT=DPT/US

PW=US/DPT

CALCULATION OF REQUIRED START UP TIME FOR SIMULATION

TSO=] eB#XT/US

NMIN=TSO/DTT

TMAX1=NMIN*DTT

IF NMIN IS GREATER THAN NTMs NTM |S OVERRIDDEN
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150
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152

153
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n

FF(NMIN-NTM)201 4201 +202
NTM=NMIN

CONTINUE

TMAX=NTM*DTT
WRITE(6+100) DTT.TMAX

FORMAT (SX 4 #DT=%#eF10eB8e 10X ¢ ¥*TMAX=%,F 1004 4//)

TMAXS=CDIMXDTT
TMAX=TMAX+TMAXI
NTMZ2=NDIM~NMIN+2
TREF=TMAX]

NREL =0

INITIALIZE PRESSURE ARRAY
DO 52 NX=1«NXxM

DO 52 NT=1«NDIM
PINX+NT)=040

NFLG=0

TSUB=0e

INITIALIZE LOCATION AND TIME BASE,
X=0e

NCT=0

DTSUM=0+

TO=TO+DTAVG
IF(TO-TMAX1)24190+150

IF(NFLG) 1514151415
NFLG=1

TMAX ] =TMAX

DO 154 I=1+NXM

DO 152 J=NMIN'NDIM
JI=J+1-NMIN
PlleJII=P(14J)
CONTINUE

DO 153 J=NTM2WNDIM
P(IeJ)=040

CONT INUE

CONT [NUE

TSUB=TREF
TMAXS=TMAXS+TREF
NREL =NMIN

RNM=URAN (XSTART )
RNM=04+0054+0 s 99 %RNM

ETCe

CALCULATION OF DX USING RANDOM NUMBER RNM

HP I [ =HP [ *RNM

DX:PX*(32¢2-2/(RNM40De6H519)4+ 72 ¥RNMEX2+0.6I%TAN(HPI 1))

OX=CORX*DX
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X=X+DX

RNMzZURAN (XSTART )

RNM=0 4 005+0 s 99%#RNM

CALCULATION OF RADIAN FREGQe FROM NEW RNM

SRNMIRNM* %0 » 6667

RRNM=Z (1 s =RNM) ##0,74

FRNM=1 /RRNM=-]

W=PW* (0 e S23¥FRNM+0e 799%SRNNM—0e 7ES#RNM )

Fsw/TP1

TP=1/F

DXE=0+s 8¥*US*TP

X0=x~DXE

X0 1S THE ORIGIN OF THE SINE WAVE FLUCTUATION

X 1S THE FRONT OF THE SINE WAVE

XS 15 THE FIRST STATION AT wHICH P 1S RECORDEDS
XS AND NXI wilLlL BE TAKEN A5 THE FIRST »>TATION VALUES--THAEN OVERIDDEN

X5=XD

NXI=1

CHECK TO SEE IF THE DISTURBANCE 15 OVER THE MODEL

IF(X~XD)5¢5¢3

IF THE DISTURBANCE 1S OVER THE MODEL .« HAS 1T PASSEL THE LAST DATA
STATION

IF (X=XSMX )4 el o}

NXT 1S THE NUMBER OF THE FIRST STORAGL LOCATION

NXI={X=XD)/DXT+] ¢ 9999

CXNI=NX1I

XS=EXD+CXNI*DXT

CONT INUE

GENERATION OF RANDOM TIME STEP

RNM=URAN (XSTART)

RNM=0,005404 99%RNM

HP [ 1=HP I #RNM

DTEPT#(32¢2-2¢/ (RNM+0e619)+72s ¥ RNM® %240, 63%¥TAN(HP1 1))

DT=CORT#*DT

T=TO+DT

NCT=NCT+!1

DTSUM=DTSUM+DT

DTAVG=DTSUM/NCT

GENERATION OF GAUSSIAN RANDOM PRESSURE AMPLITUDE

RNM=URAN (XSTART)

CIND=RNM+ 05

IND=CIND

CIND=IND

PPPa2e# (1 e=CIND)=1,

35



36

19

ARGR=RNM/ (1 ¢ +CIND)
ARG=1e/ (ARGR*ARGR)

CT=ALOG(ARG)

CM=SQRTI(CT)

PMG=CM~ (CO+CMX (CP+CMAC2) )/ (14 CME(D]I+CMECD24+CMAD3) )
X$S=xS-0OXT

PE=PRMS*PMG *PPP

MODIFICATION OF PRESSURE aMPLITUDE 10 ADJUST RM> ©RESSURE LEVEL
PE=0+8B%PE

DO LOOP FOR STEFPING THRQUGH MODEL STORAGE LOCATIONS
DO 14 NX=NX] «NXM

MODEL STATION X-{_OCATION

XS=xXS+DXT

ARRIVAL TIiME OF PRESSURE FLUCTUATION

DXS=XS5-X

TGO=1e25%¥DXS/USH+T

FLUCTUATION DEPARTURE TIME

DX0O=X5S-XO0

TSTP=1¢25*DX0O/US+T

DOES TSTP EXCEEDL TMAX

IF(TSTP-TMAXS)919.47

IF(TGO-TMAXS)B8.8413

NSTOP=NDIM

GO TO 10

NSTOP=TSTP/DTT

NGO=TGO/DTT

IF (NGO~NREL )99.99.98

CONT INUE

DO LOOP FOR SUCCESSIVE TIME CONTRIBUTIONS TO THE SAME X LOCATION
DO 12 NT=NGONSTOP

TC=NT*DTT

THET=TPI*(TC-TGO)y /TP

DELT=TC-T

XOT=0eB®*US*DELT

[F(XOT-0.,0005)19+.19+18

CONT INUE

ARGX=~3000%¥CNU/ (XOT*UFRIC)

FREQUENCY DEPRPENLENT VARIAGLE DECAY RAIE ADJUSIMEN]
ARGAR=-CWV/DXE

ARGX=ARGX¥EXP (ARGAR)

DECA=1-EXP (ARGX)

GO 1O 23

CONTINUE

DECA=1.
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130
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CONT INUE
DP=PE#SIN(THET )% (1+-COS(THET))
DP=DP#*DECA

NT IME=NT~NREL

P (NXsNTIME ) =P (NX«NTIME ) +DP
CONT INUE

CONT INUE

CONT INUE

CONT INUE )

FORMAT (SX+F10e646E1G06)

GO TO 2

CONTINUE

NWRT=NTM/8

CNT=NTM

DO 11 J=1.:5

PA(J)=0e0

PR(J)=0e0

DO 21 J=1.45

DO 20 1=1+NTM

PALJ)I=PA(JI)I+P (Js [ )/CNT

PRIJI=PR(JI+(P(Je 1 ) ¥%2/CNT )
CONT INUE

PR(J)=PR(J)**%0e5

CONT INUE

DO 22 J=1.45

DO 22 I=1.NTM

PlJ1)=P(Je1)-PA(Y)

NYM=1000SNZM=2001

ANN=2001

DO 24 KK=144

DO 25 K=14NYM
SUM=0+%$SUM1 =0,

Kl=K-1

NZ=NZM-K1

DO 40 M=1.NZ
SUM=SUM+P (1 «M)*P (1 +M4+K 1) /PR( 1) %%2
SUMI =SUM] +P (1 +MI¥P(KK+1+M+K1 )1 /PR (1) /PR(KK+1)
CONT INUE

SUMX (K ) =SUM/ANN

SUMY (K ) =SUM1 /ANN

CONT INUE

IF (KKeGTel) GO TO 75
WRITE(NW«191)

FORMAT (1H1)
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200
75

90

80

793

24

94
93

WRITE(NW«200) {SUMX(K)eK=1,1000)
FORMAT(5E2046)

CONTINUE

WRITE(NW191)
WRITE(NW200) (SUMY (K )sK=1)41000)
NXx=1000

DO BO K=1 eNXX

SUM=0s5SUMI =0

K] =K=1

DO 90 M=K «NYM
SUM=SUM+P (1 ¢+ M} %P (1 «M=-K 1) /PR (1) ¥%*2
SUMI=SUMI 4P (1 «M)¥P(KK+] «M=K1)}/PR(1)/PR(KK+]1)
CONT JNUE

SUMX (K ) =SUM/ANN

SUMY (K)=SUM] /ANN

CONT INUE

IF(XKeGTel) GO TO 793
WRITE(NW«191)

WRITE(NWe200) (SUMX(K)eK=].1000)
CONT INUE

WRITE(NW191 )
WRITE(NW«200) (SUMY (K )1eK=1¢1000)
CONTINUE

JXY=5500

DO 93 1JJU=1+3

JISIJIS=1reIXYH]

J2=1JIRIXY

DO 94 KK=1145
WRITE(1 ) (PIKKeJL) s JL=J1sJ2)
ENDFILE 1

CONT INUE

CONT INUE

sSTOP

END



REFERENCES

Bushnell, D.M., Hefner, J.N., and Ash, R.L.: Compliant wall
drag reduction for turbulent boundary layers. Phys. Fluids,
vol. 20, part II, pp. 33-48, 1977.

Offen, G.R. and Kline, S.J.: Experiments on the velocity
characteristics of 'bursts' and on the interaction between
the inner and outer regions of a turbulent boundary layer
flow. Thermosciences Division, Mech. Eng. Dept., Stanford
University, report no. MD-31, 1973.

Praturi, A.K.: Visual study of a turbulent shear flow. Ph.D.
dissertation, Dept. Chem. Eng., Ohio State University, 1975.

Ash, R.L. and Balasubramanian, R.: Resonance phenomena due to
turbulent boundary layer excitation. ASCE Water Resources
and Ocean Engineering Convention, San Diego, CA, preprint
2726, April 1976.

Willmarth, W.W.: Pressure fluctuations beneath turbulent
boundary layers. Ann. Rev. Fluid Mech., vol. 17, pp. 13-38,
1975.

Willmarth, W.W. and Woolridge, C.E.: Measurements of the
fluctuating pressure at the wall beneath a thick turbulent
boundary layer. J. Fluid Mech., vol. 14, pp. 187-210, 1962.

Bull, M.K.: Wall pressure fluctuations associated with sub-
sonic turbulent boundary layer flow. J. Fluid Mech., vol. 28,
pp. 719-754, 1967.

Emmerling, R.: The instantaneous structure of the wall
pressure under a turbulent boundary layer flow. Max-Planck-
Institut fur Stromungsforschung, report no. 9, 1973.

Bull, M.K. and Thomas, A.S.W.: High frequency wall pressure
fluctuations in turbulent boundary layers. Phys. Fluids,
vol. 19, pp. 597-599, 1976.

39



10.

11.

12.

13.

40

Burton, T.E.: The connection between intermittent turbulent
activity near the wall of a turbulent boundary layer with
pressure fluctuations at the wall. Mass. Inst. Tech., Dept.
of Mech. Eng., report 70208-10 (N75-12258), 1974.

Deardorff, J.W.: A numerical study of three-dimensional turbu-
lent channel flow at large Reynolds numbers. J. Fluid Mech.,
vol. 41, pp. 453-480, 1970.

Schumann, U.: Numerical investigation of the wall pressure
fluctuations in channel flows. Nuclear Engineering and
Design, vol. 32, pp. 37-46, 1976.

Ash, R.L.: Simulation of turbulent wall pressure.
NASA CR-154872, 1977.



1. Report No. 2._ Government Accession No.

NASA CR-2958

3. Recipient’s Catalog No.

4. Title and Subtitle

SIMULATION OF TURBULENT WALL PRESSURE

5. Report Date

May 1978

6. Performing Organization Code

. 7. Author(s)
Robert L. Ash

8. Performing Organization Report No.

10. Work Unit No.

9. Performing Organization Name and Address

01d Dominion University
School of Engineering
Norfolk, VA 23508

12 Spbnsoring Agency Name and Address
National Aeronautics & Space Administration
Washington, DC 20546

11. Contract or Grant No.

NSG-1100

13. Type of Report and Period Covered
Contractor Report

14. Sponsaring Agency Code

15. Supplementary Notes
Langley Technical Monitor: Jerry N. Hefner

Final Report

16. Abstract

A Monte Carlo procedure has been developed to simulate turbulent boundary
layer wall pressure fluctuations. The approach utilizes much of the newly available
conditional sampling information to construct the required distribution functions.
Various disturbance wave forms have been examined, as well as the effect of frequency-
dependent decay. Good agreement between the simulation and experimental data has
been achieved for root mean square pressure level, power spectrum, and space-time

correlation.

17. Key Words (Suggested by Author(s)) 18. Distribution Statement

Turbulent boundary layer
Pressure simulation
Computational fluid dynamics

Unclassified - Unlimited

Subject Category 34

19. Security Classif. (of this report) | 20. Security Classif. (of this page)
Unclassified Unclassified

T21. No. of Pages | 22. Prices
42 $4.50

* For sale by the National Technical Information Service, Springhield. Virginia 22161

NASA-Langley, 1978




